首页> 外文会议>Conference on Image Processing >Comparison of parametric methods for modeling corneal surfaces
【24h】

Comparison of parametric methods for modeling corneal surfaces

机译:建模角膜表面的参数化方法的比较

获取原文

摘要

Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces least-squares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.
机译:角膜地形图是一种医学成像技术,可将角膜的3D形状作为其前表面和后表面的3D点集合。从这些数据中,可以得出地形图,以帮助眼科医生诊断疾病。在本文中,我们将对角膜表面最小二乘的三种不同数学参数表示形式进行比较,以拟合角膜地形图提供的数据。从这些模型获得的参数将数据的维数从数千个3D点减少到仅几个参数,并且最终可用于诊断,生物测定,植入物设计等。第一种表示法是基于光学中常用的Zernike多项式。这些多项式的一个变种,称为Bhatia-Wolf,也将进行研究。这两组多项式是在圆域上定义的,这方便了对角膜表面的高程(高度)建模。第三种表示法是特别适合于近球形物体建模的球谐函数,这就是角膜的情况。我们使用以下三个标准比较了这三种方法:均方根误差(RMSE),参数数量和重建的地形图的视觉准确性。使用了超过2000个角膜地形图的大型数据集。我们的研究结果表明,球谐函数优于RMSE均值,均方根值低于2.5微米,正常角膜的系数为36(5阶),而两种影响角膜形状的疾病(圆锥角膜和Fuchs营养不良)的均方根值小于5微米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号