首页> 外文会议>Conference on Computability in Europe >Complexity of Maximum Fixed Point Problem in Boolean Networks
【24h】

Complexity of Maximum Fixed Point Problem in Boolean Networks

机译:布尔网络中最大不动点问题的复杂性

获取原文

摘要

A Boolean network (BN) with n components is a discrete dynamical system described by the successive iterations of a function f : {0, 1}~n → {0, 1}~n. This model finds applications in biology, where fixed points play a central role. For example in genetic regulation they correspond to cell phenotypes. In this context, experiments reveal the existence of positive or negative influences among components: component i has a positive (resp. negative) influence on component j, meaning that j tends to mimic (resp. negate) i. The digraph of influences is called signed interaction digraph (SID), and one SID may correspond to multiple BNs. The present work opens a new perspective on the well-established study of fixed points in BNs. Biologists discover the SID of a BN they do not know, and may ask: given that SID, can it correspond to a BN having at least k fixed points? Depending on the input, this problem is in P or complete for NP, NP~(#P) or NEXPTIME.
机译:具有n个分量的布尔网络(BN)是由函数f的连续迭代描述的离散动力学系统:{0,1}〜n→{0,1}〜n。该模型在固定点起着核心作用的生物学中找到了应用。例如,在遗传调控中,它们对应于细胞表型。在这种情况下,实验揭示了组件之间存在正面或负面影响:组件i对组件j具有正面(或负面)影响,这意味着j倾向于模仿(否定)i。影响图被称为签名交互图(SID),一个SID可能对应于多个BN。本工作为完善的BN中固定点的研究开辟了新的视角。生物学家发现他们不知道的BN的SID,并可能会问:给定该SID,它是否可以对应于具有至少k个固定点的BN?根据输入的不同,此问题可能在P中,或者对于NP,NP〜(#P)或NEXPTIME都是完整的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号