首页> 外文会议>Biological and artificial computation : From neurosciene to technology >Infraclinic Breast Carcinoma: Application of Neural Networks Techniques for the Indication of Radioguided Biopsias
【24h】

Infraclinic Breast Carcinoma: Application of Neural Networks Techniques for the Indication of Radioguided Biopsias

机译:舌下乳腺癌:神经网络技术在放射性活检指示中的应用

获取原文
获取原文并翻译 | 示例

摘要

The aim of this work was to determine if the utilization of an artificial neural network (ANN) for the indication of radioguided biopsias can reduce the percentage of negative biopsias. The ANN was constructed as a three-layer, feed-forward network. The input layer consist of 15 input nodes corresponding to the radiologic and clinico-epidemiological data to evaluate The ANN was trained using a supervised learning algorithm on 190 cases (122 benign, 68 malignant cases ) and tested on 47 cases (30 benign, 17 malignant cases). Performance of the network was evaluated in terms of sensitivity and specificity over a range of decision threshold and was expressed as a receiver operationg characteristic curve (ROC). The ANN performed more accurately than the radiologists with a sensitivity of 1.0 and specificity of 0.6. An ANN can be trained to predict malignancy from mammographic findings and clinicoepidemiological data with a high degree of accuracy.
机译:这项工作的目的是确定利用人工神经网络(ANN)指示放射性引导活检是否可以减少阴性活检的百分比。 ANN被构造为三层前馈网络。输入层由15个与放射线和临床流行病学数据相对应的输入节点组成,以评估ANN使用监督学习算法对190例(良性122例,恶性68例)进行了训练,并对47例(30例良性,17例恶性)进行了测试情况)。根据决策阈值范围内的灵敏度和特异性评估网络的性能,并表示为接收器操作特性曲线(ROC)。与放射线医师相比,人工神经网络的准确性更高,灵敏度为1.0,特异性为0.6。可以训练ANN从乳房X线检查结果和临床流行病学数据中高度准确地预测恶性肿瘤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号