首页> 外文会议>Bioinformatics Research and Development; Lecture Notes in Bioinformatics; 4414 >Prediction of Structurally-Determined Coiled-Coil Domains with Hidden Markov Models
【24h】

Prediction of Structurally-Determined Coiled-Coil Domains with Hidden Markov Models

机译:用隐马尔可夫模型预测结构确定的卷材管域

获取原文
获取原文并翻译 | 示例

摘要

The coiled-coil protein domain is a widespread structural motif known to be involved in a wealth of key interactions in cells and organisms. Coiled-coil recognition and prediction of their location in a protein sequence are important steps for modeling protein structure and function. Nowadays, thanks to the increasing number of experimentally determined protein structures, a significant number of coiled-coil protein domains is available. This enables the development of methods suited to predict the coiled-coil structural motifs starting from the protein sequence. Several methods have been developed to predict classical heptads using manually annotated coiled-coil domains. In this paper we focus on the prediction structurally-determined coiled-coil segments. We introduce a new method based on hidden Markov models that complement the existing methods and outperforms them in the task of locating structurally-defined coiled-coil segments.
机译:卷曲螺旋蛋白结构域是一种广泛的结构基序,已知与细胞和生物体中的许多关键相互作用有关。螺旋线圈的识别及其在蛋白质序列中的位置预测是建模蛋白质结构和功能的重要步骤。如今,由于实验确定的蛋白质结构数量不断增加,因此可以使用大量的卷曲螺旋蛋白质结构域。这使得能够开发适合于从蛋白质序列开始预测卷曲螺旋结构基序的方法。已经开发了几种方法来使用人工注释的卷曲螺旋结构域来预测经典七肽。在本文中,我们着重于预测结构确定的盘绕段。我们介绍了一种基于隐马尔可夫模型的新方法,该方法可对现有方法进行补充,并在定位结构定义的盘绕线圈段的任务中胜过它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号