首页> 外文会议>Bioinformatics and Biomedicine, 2009. BIBM '09 >A 2-Stage Approach for Inferring Gene Regulatory Networks Using Dynamic Bayesian Networks
【24h】

A 2-Stage Approach for Inferring Gene Regulatory Networks Using Dynamic Bayesian Networks

机译:使用动态贝叶斯网络推断基因调控网络的两阶段方法

获取原文

摘要

The inference of Gene Regulatory networks (GRN) from microarrray data suffers from the low accuracy and the excessive computation time. Biological domain knowledge of the cellular process, from which the data is generated, is believed to be effective in addressing such challenges. In this paper, we have used two biological features of gene regulation of yeast cell cycle: 1) a high proportion of the Cell Cycle Regulated genes are periodically expressed, and 2) genes are both co-expressed and co-regulated. Together with the computational implementation of these features, we have learnt regulators of both individual and co-expressed genes using Dynamic Bayesian Networks. The proposed 2-stage GRN model has been found to be more computationally efficient and topologically accurate compared to other existing models.
机译:从微阵列数据推断基因调控网络(GRN)存在精度低和计算时间长的问题。据信,从中产生数据的细胞过程的生物学领域知识在应对这些挑战方面是有效的。在本文中,我们利用了酵母细胞周期基因调控的两个生物学特征:1)周期性表达高比例的细胞周期调控基因,以及2)基因被共表达和共调控。连同这些功能的计算实现,我们已经使用动态贝叶斯网络学习了单个和共表达基因的调节子。与其他现有模型相比,已发现拟议的2级GRN模型在计算效率和拓扑结构上更为精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号