首页> 外文会议>Automatic Target Recognition XXVI >Real-life Identification of Partially Occluded Weapons in Videoframes
【24h】

Real-life Identification of Partially Occluded Weapons in Videoframes

机译:真实识别视频帧中部分被遮挡的武器

获取原文
获取原文并翻译 | 示例

摘要

We empirically test the capacity of an improved system to identify not just images of individual guns, but partially occluded guns and their parts appearing in a videoframe. This approach combines low-level geometrical information gleaned from the visual images and high-level semantic information stored in an ontology enriched with meronymic part-whole relations. The main improvements of the system are handling occlusion, new algorithms, and an emerging meronomy. Well-known and commonly deployed in ontologies, actual meronomies need to be engineered and populated with unique solutions. Here, this includes adjacency of weapon parts and essentiality of parts to the threat of and the diagnosticity for a weapon. In this study video sequences are processed frame by frame. The extraction method separates colors and removes the background. Then image subtraction of the next frame determines moving targets, before morphological closing is applied to the current frame in order to clean up noise and fill gaps. Next, the method calculates for each object the boundary coordinates and uses them to create a finite numerical sequence as a descriptor. Parts identification is done by cyclic sequence alignment and matching against the nodes of the weapons ontology. From the identified parts, the most-likely weapon will be determined by using the weapon ontology.
机译:我们通过经验测试了一种改进的系统的能力,该系统不仅可以识别单个枪支的图像,还可以识别部分闭塞的枪支及其出现在视频帧中的零件。这种方法结合了从视觉图像中收集的低级几何信息和存储在本体中的高级语义信息,本体中丰富了全称的部分-整体关系。该系统的主要改进是处理遮挡,新算法和新兴的原理。众所周知,并且通常在本体中部署,实际的代名词需要进行工程设计并配备独特的解决方案。在此,这包括武器零件的邻接以及零件对武器威胁和诊断的必要性。在这项研究中,视频序列是逐帧处理的。提取方法分离颜色并去除背景。然后,在将形态学闭合应用于当前帧以清除噪声和填充间隙之前,对下一帧进行图像减法确定运动目标。接下来,该方法为每个对象计算边界坐标,并使用它们创建一个有限的数字序列作为描述符。零件识别是通过循环序列比对并与武器本体的节点匹配来完成的。从识别出的部分中,最可能的武器将通过使用武器本体来确定。

著录项

  • 来源
    《Automatic Target Recognition XXVI》|2016年|98440Y.1-98440Y.10|共10页
  • 会议地点 Baltimore MD(US)
  • 作者单位

    Ontological Semantic Technology Lab. Texas A M University - Commerce, TX 75428, USA,Literature and Languages Texas A M University - Commerce, TX 75428, USA;

    Ontological Semantic Technology Lab. Texas A M University - Commerce, TX 75428, USA,Depts. of Computer Science Texas A M University - Commerce, TX 75428, USA;

    Ontological Semantic Technology Lab. Texas A M University - Commerce, TX 75428, USA,College of Humanities, Social Sciences Arts Texas A M University - Commerce, TX 75428, USA;

    Physics Astronomy Texas A M University - Commerce, TX 75428, USA;

    Ontological Semantic Technology Lab. Texas A M University - Commerce, TX 75428, USA,Depts. of Computer Science Texas A M University - Commerce, TX 75428, USA,Mathematics Texas A M University - Commerce, TX 75428, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    weapons; ontology; meronymy; extraction; representation; search; matching;

    机译:武器本体代名词萃取;表示;搜索;匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号