首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised clustering in Hough space for identification of partially occluded objects
【24h】

Unsupervised clustering in Hough space for identification of partially occluded objects

机译:Hough空间中的无监督聚类,用于识别部分被遮挡的对象

获取原文
获取原文并翻译 | 示例

摘要

An automated approach for template-free identification of partially occluded objects is presented. The contour of each relevant object in the analyzed scene is modeled with an approximating polygon whose edges are then projected into the Hough space. A structurally adaptive self-organizing map neural network generates clusters of collinear and/or parallel edges, which are used as the basis for identifying the partially occluded objects within each polygonal approximation. Results on a number of cases under different conditions are provided.
机译:提出了一种自动方法,无需模板即可识别部分被遮挡的物体。使用近似多边形对分析场景中每个相关对象的轮廓进行建模,然后将其边缘投影到霍夫空间中。结构自适应的自组织映射神经网络生成共线和/或平行边缘的簇,这些簇用作识别每个多边形近似内部分被遮挡的对象的基础。提供了在不同条件下的许多案例的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号