首页> 外文会议>Automata, languages and programming >Complexity of Model Checking Recursion Schemes for Fragments of the Modal Mu-Calculus
【24h】

Complexity of Model Checking Recursion Schemes for Fragments of the Modal Mu-Calculus

机译:模态Mu-微积分片段的模型检查递归方案的复杂性

获取原文
获取原文并翻译 | 示例

摘要

Ong has shown that the modal mu-calculus model checking problem (equivalently, the alternating parity tree automaton (APT) acceptance problem) of possibly-infinite ranked trees generated by order-n recursion schemes is n-EXPTIME complete. We consider two subclasses of APT and investigate the complexity of the respective acceptance problems. The main results are that, for APT with a single priority, the problem is still n-EXPTIME complete; whereas, for APT with a disjunctive transition function, the problem is (n - 1)-EXPTIME complete. This study was motivated by Kobayashi's recent work showing that the resource usage verification for functional programs can be reduced to the model checking of recursion schemes. As an application, we show that the resource usage verification problem is (n - 1)-EXPTIME complete.
机译:Ong已表明,由n阶递归方案生成的可能无限排序树的模态多演算模型检查问题(等效地,交替奇偶树自动机(APT)接受问题)已完成n-EXPTIME。我们考虑了APT的两个子类,并研究了各自接受问题的复杂性。主要结果是,对于具有单个优先级的APT,问题仍然是n-EXPTIME完成的。但是,对于具有析取转换函数的APT,问题是(n-1)-EXPTIME完成。这项研究是由Kobayashi的最新工作推动的,该工作表明,可以将功能程序的资源使用验证简化为递归方案的模型检查。作为一个应用程序,我们表明资源使用验证问题已完成(n-1)-EXPTIME。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号