首页> 外文会议>Automata, languages and programming >Concatenable Graph Processes:Relating Processes and Derivation Traces
【24h】

Concatenable Graph Processes:Relating Processes and Derivation Traces

机译:可连接的图过程:相关过程和派生迹线

获取原文
获取原文并翻译 | 示例

摘要

Several formal concurrent semantics have been proposed for graph rewriting, a powerful formalism for the specification of concurrent and distributed systems which generalizes P/T Petri nets. In this paper we relate two such semantics recently proposed for the algebraic double-pushout approach to graph rewriting, namely the derivation trace and the graph process semantics. The notion of concatenable graph process is introduced and then the category of concatenable derivation traces is shown to be isomorphic to the category of concatenable graph processes. As an outcome we obtain a quite intuitive characterization of events and configurations of the event structure associated to a graph grammar.
机译:已经提出了几种用于图形重写的形式化并发语义,这是规范并发和分布式系统的强大形式主义,可以概括P / T Petri网。在本文中,我们将最近为代数双推方法进行图重写而提出的两种此类语义,即派生迹线和图过程语义。介绍了可连接图过程的概念,然后显示可连接派生迹线的类别与可连接图过程的类别同构。结果,我们获得了事件的非常直观的表征以及与图文法相关的事件结构的配置。

著录项

  • 来源
  • 会议地点 Aalborg(DK);Aalborg(DK)
  • 作者单位

    Dipartimento di Informatica - University of Pisa Corso Italia, 40, 56125 Pisa, Italy;

    Dipartimento di Informatica - University of Pisa Corso Italia, 40, 56125 Pisa, Italy;

    Dipartimento di Informatica - University of Pisa Corso Italia, 40, 56125 Pisa, Italy;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算机软件;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号