【24h】

SECOND ORDER ACCURACY FINITE DIFFERENCE METHODS FOR FRACTIONAL DIFFUSION EQUATIONS

机译:分数阶扩散方程的二阶精度有限差分方法

获取原文
获取原文并翻译 | 示例

摘要

Finite difference methods for fractional differential equation are ever proposed. However, precise error orders have not been analyzed for the methods higher than first order accuracy. This paper proposes a few finite difference methods for fractional diffusion equations and shows our methods have second order accuracy under the conditions that the solution functions have higher order than second order at boundaries. In addition, we show that the accuracy may decrease in the case that the solution functions have lower order than second order at boundaries when we use second order accuracy scheme. In this paper, we treat schemes based on Grunwald-Letnikov definition and apply them to three kinds of fractional diffusion equations using Riemann-Liouville derivative operator including time-fractional diffusion equation, space-fractional diffusion equation and time-space-fractional diffusion equation. Finally, we show the simulation results which indicate that our methods are stable and have successfully second order accuracy under the assumed conditions.
机译:曾经提出过分数阶微分方程的有限差分方法。但是,对于高于一阶精度的方法,尚未分析精确的误差阶。本文针对分数阶扩散方程提出了几种有限差分方法,并证明了在边界处解函数具有高于二阶的条件下,我们的方法具有二阶精度。另外,我们表明当使用二阶精度方案时,在边界处解函数的阶次低于二阶的情况下,精度可能会降低。在本文中,我们处理基于Grunwald-Letnikov定义的方案,并将其应用于使用Riemann-Liouville导数算子的三种分数阶扩散方程,包括时间分数阶扩散方程,空间分数阶扩散方程和时空分数阶扩散方程。最后,我们显示了仿真结果,表明我们的方法是稳定的,并且在假定条件下具有成功的二阶精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号