首页> 外文会议>Artificial Neural Networks in Pattern Recognition >Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition
【24h】

Improving Features Subset Selection Using Genetic Algorithms for Iris Recognition

机译:利用遗传算法改进虹膜识别的特征子集选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an iris recognition method based on genetic algorithms (GA) to select the optimal features subset. The iris data usually contains huge number of textural features and a comparatively small number of samples per subject, which make the accurate iris patterns classification challenging. Feature selection scheme is used to identify the most important and irrelevant features from extracted features set of relatively high dimension based on some selection criterions. The traditional feature selection schemes require sufficient number of samples per subject to select the most representative features sequence; however, it is not always practical to accumulate a large number of samples due to some security issues. In this paper, we propose GA to improve the feature subset selection by combining valuable outcomes from multiple feature selection methods. The main objective of GA is to achieve a balance among the recognition rate, the false accept rate, the false reject rate and the selected features subset size. This paper also motivates and introduces the use of Gaussian Mixture Model for iris pattern classification. The proposed technique is computationally effective with the recognition rates of 97.81 % and 96.23% on the ICE (Iris Challenge Evaluation) and the WVU (West Virginia University) iris datasets respectively.
机译:本文提出一种基于遗传算法的虹膜识别方法,以选择最优特征子集。虹膜数据通常包含大量的纹理特征,每个受试者的样本数量相对较少,这使得准确的虹膜图案分类具有挑战性。特征选择方案用于基于一些选择准则从相对高维的提取特征集中识别最重要和不相关的特征。传统的特征选择方案要求每个主题有足够数量的样本以选择最具代表性的特征序列。但是,由于某些安全问题,累积大量样本并不总是可行的。在本文中,我们提出了遗传算法以通过结合多种特征选择方法的宝贵成果来改进特征子集选择。 GA的主要目标是在识别率,错误接受率,错误拒绝率和所选特征子集大小之间取得平衡。本文还激发并介绍了高斯混合模型在虹膜图案分类中的应用。所提出的技术在计算上是有效的,在ICE(虹膜挑战评估)和WVU(西弗吉尼亚大学)虹膜数据集上的识别率分别为97.81%和96.23%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号