首页> 外文会议>Artificial Neural Networks in Pattern Recognition >Real-Time Emotion Recognition from Speech Using Echo State Networks
【24h】

Real-Time Emotion Recognition from Speech Using Echo State Networks

机译:使用回声状态网络进行语音实时情感识别

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to investigate real-time emotion recognition in noisy environments. Our approach is to solve this problem using novel recurrent neural networks called echo state networks (ESN). ESNs utilizing the sequential characteristics of biologically motivated modulation spectrum features are easy to train and robust towards noisy real world conditions. The standard Berlin Database of Emotional Speech is used to evaluate the performance of the proposed approach. The experiments reveal promising results overcoming known difficulties and drawbacks of common approaches.
机译:这项工作的目的是研究嘈杂环境中的实时情绪识别。我们的方法是使用称为回波状态网络(ESN)的新型递归神经网络解决此问题。利用生物动机调制频谱特征的顺序特征的ESN易于训练,并且在嘈杂的现实世界条件下也很健壮。标准的柏林情感言语数据库用于评估所提出方法的性能。实验揭示了有希望的结果,克服了常见方法的已知困难和缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号