首页> 外文会议>Artificial neural networks in pattern recognition >Robustness Analysis of Eleven Linear Classifiers in Extremely High-Dimensional Feature Spaces
【24h】

Robustness Analysis of Eleven Linear Classifiers in Extremely High-Dimensional Feature Spaces

机译:极高维特征空间中十一个线性分类器的鲁棒性分析

获取原文
获取原文并翻译 | 示例

摘要

In this study we address the linear classification of noisy high-dimensional data in a two class scenario. We assume that the cardinality of the data is much lower than its dimensionality. The problem of classification in this setting is intensified in the presence of noise. Eleven linear classifiers were compared on two-thousand-one-hundred-and-fifty artificial datasets from four different experimental setups, and five real world gene expression profile datasets, in terms of classification accuracy and robustness. We specifically focus on linear classifiers as the use of more complex concept classes would make over-adaptation even more likely. Classification accuracy is measured by mean error rate and mean rank of error rate. These criteria place two large margin classifiers, SVM and ALMA, and an online classification algorithm called PA at the top, with PA being statistically different from SVM on the artificial data. Surprisingly, these algorithms also outperformed statistically significant all classifiers investigated with dimensionality reduction.
机译:在这项研究中,我们解决了两类情况下嘈杂的高维数据的线性分类。我们假设数据的基数远低于其维数。在存在噪声的情况下,这种设置下的分类问题加剧了。在分类准确性和鲁棒性方面,在来自四个不同实验设置的五十二个和五十一个人工数据集和五个真实世界基因表达谱数据集上比较了11个线性分类器。我们特别关注线性分类器,因为使用更复杂的概念类将使过度适应的可能性更大。分类准确度通过平均错误率和平均错误率等级来衡量。这些标准在顶部放置了两个大的边缘分类器SVM和ALMA,以及一个称为PA的在线分类算法,在人工数据上,PA在统计上不同于SVM。出乎意料的是,这些算法在降维方面研究的所有分类器在统计上也胜过所有分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号