首页> 外文会议>Artificial neural networks in pattern recognition >Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling
【24h】

Analysis, Interpretation, and Recognition of Facial Action Units and Expressions Using Neuro-Fuzzy Modeling

机译:使用神经模糊模型对面部动作单元和表情进行分析,解释和识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper an accurate real-time sequence-based system for representation, recognition, interpretation, and analysis of the facial action units (AUs) and expressions is presented. Our system has the following characteristics: 1) employing adaptive-network-based fuzzy inference systems (ANFIS) and temporal information, we developed a classification scheme based on neu- ro-fuzzy modeling of the AU intensity, which is robust to intensity variations, 2) using both geometric and appearance-based features, and applying efficient dimension reduction techniques, our system is robust to illumination changes and it can represent the subtle changes as well as temporal information involved in formation of the facial expressions, and 3) by continuous values of intensity and employing top-down hierarchical rule-based classifiers, we can develop accurate human-interpretable AU-to-expression converters. Extensive experiments on Cohn-Kanade database show the superiority of the proposed method, in comparison with support vector machines, hidden Markov models, and neural network classifiers.
机译:在本文中,提出了一种基于精确实时序列的面部动作单元(AU)和表情的表示,识别,解释和分析系统。我们的系统具有以下特点:1)利用基于自适应网络的模糊推理系统(ANFIS)和时间信息,我们基于AU强度的神经模糊建模开发了分类方案,该分类方案对强度变化具有鲁棒性, 2)同时使用基于几何和外观的特征,并应用有效的降维技术,我们的系统对照明变化具有鲁棒性,并且可以表示面部表情形成所涉及的细微变化以及时间信息,以及3)通过连续值的强度并使用自上而下的基于规则的分层分类器,我们可以开发准确的人类可解释的AU到表达转换器。与支持向量机,隐马尔可夫模型和神经网络分类器相比,在Cohn-Kanade数据库上进行的大量实验证明了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号