首页> 外文期刊>Pattern recognition letters >Learning person-specific models for facial expression and action unit recognition
【24h】

Learning person-specific models for facial expression and action unit recognition

机译:学习特定于人的面部表情和动作单位识别模型

获取原文
获取原文并翻译 | 示例

摘要

A key assumption of traditional machine learning approach is that the test data are draw from the same distribution as the training data. However, this assumption does not hold in many real-world scenarios. For example, in facial expression recognition, the appearance of an expression may vary significantly for different people. As a result, previous work has shown that learning from adequate person-specific data can improve the expression recognition performance over the one from generic data. However, person-specific data is typically very sparse in real-world applications due to the difficulties of data collection and labeling, and learning from sparse data may suffer from serious over-fitting. In this paper, we propose to learn a person-specific model through transfer learning. By transferring the informative knowledge from other people, it allows us to learn an accurate model for a new subject with only a small amount of person-specific data. We conduct extensive experiments to compare different person-specific models for facial expression and action unit (AU) recognition, and show that transfer learning significantly improves the recognition performance with a small amount of training data.
机译:传统机器学习方法的一个关键假设是测试数据来自与训练数据相同的分布。但是,这种假设在许多现实情况中并不成立。例如,在面部表情识别中,表情的外观对于不同的人可能有很大的不同。结果,以前的工作表明,从适当的特定于人的数据中学习可以比从通用数据中的学习提高表情识别性能。但是,由于数据收集和标记的困难,特定于个人的数据在实际应用中通常非常稀疏,并且从稀疏数据中学习可能会遭受严重的过度拟合。在本文中,我们建议通过迁移学习来学习特定于人的模型。通过从其他人那里转移信息知识,它使我们可以仅使用少量特定于人的数据来学习新主题的准确模型。我们进行了广泛的实验,比较了针对面部表情和动作单位(AU)识别的不同特定于人的模型,并显示了转移学习通过少量训练数据可以显着提高识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号