首页> 外文会议>Artifical Neural Networks in Engineering (ANNIE'96) Conference, held November 10-13, 1996, in St. Louis, Missouri, U.S.A. >Real-time learning of aircraft parameters using recursive least-squares to train rbf networks
【24h】

Real-time learning of aircraft parameters using recursive least-squares to train rbf networks

机译:使用递归最小二乘训练rbf网络实时学习飞机参数

获取原文
获取原文并翻译 | 示例

摘要

We describe a real-time algorithm for learning aircraft parameters to be used by an adaptive controller. Learning consists of training a collection of radial basis function neural networks to approximate the incoming data stream in the least-squares sense. Only the heights of the basis funtions are trained; heuristics are used to find their centers and widths. Since the heights enter the equations linearly, we employ recursive least-squares to quickly obtain the new heights when we incorporate additional data points and basis functions. In order to keep the computations manageable, we break the data stream into segments, with each segment approximated by about 10 basis functions. We illustrate the algorithm on a set of F-15 flight data.
机译:我们描述了一种实时算法,用于学习由自适应控制器使用的飞机参数。学习包括训练径向基函数神经网络的集合,以最小二乘的方式近似传入的数据流。仅训练基本功能的高度;启发式用于查找其中心和宽度。由于高度是线性输入方程式的,因此当我们合并其他数据点和基函数时,我们采用递归最小二乘法快速获得新的高度。为了使计算易于管理,我们将数据流分成多个部分,每个部分大约有10个基本函数。我们在一组F-15飞行数据上说明了该算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号