首页> 外文会议>Artificial Intelligence and Soft Computing - ICAISC 2008 >Evolutionary Methods for DesigningNeuro-fuzzy Modular Systems Combined by Bagging Algorithm
【24h】

Evolutionary Methods for DesigningNeuro-fuzzy Modular Systems Combined by Bagging Algorithm

机译:装袋算法的神经模糊模块化系统设计进化方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present the problem of designing modular systems combined with the Bagging Algorithm. As component classifiers the Mamdani-type neuro fuzzy-systems are applied and trained using evolutionary methods. Experimental investigations presented in this paper include the classification performed by the modular system built by means of classic Bagging algorithm and its modified version which assigns evolutionary chosen weights to base classifiers.
机译:在本文中,我们提出了结合袋装算法设计模块化系统的问题。作为组件分类器,Mamdani型神经模糊系统是使用进化方法进行应用和训练的。本文提出的实验研究包括通过经典Bagging算法构建的模块化系统执行的分类及其修改版本,该版本将进化选择权重分配给基本分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号