首页> 外文会议>Artificial intelligence and applications ; Modelling, identification and control >PROBABILISTIC PREDICTIONS OF ENSEMBLE OF CLASSIFIERS COMBINED WITH DYNAMICALLY WEIGHTED MAJORITY VOTE
【24h】

PROBABILISTIC PREDICTIONS OF ENSEMBLE OF CLASSIFIERS COMBINED WITH DYNAMICALLY WEIGHTED MAJORITY VOTE

机译:动态加权加权投票对分类器的概率概率预测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for dynamic calculation of weights that can be used in the process of aggregation of classifications by weighted majority vote. The proposed method can be used for all binary classification problems for classifiers that produce probabilistic classifications. Most aggregation functions produce an output which only represents the aggregated classification of an ensemble of classifiers and sometimes this isn't enough. This paper also proposes a method for estimation of the probability of an aggregated classification. The estimated probability of the aggregated classification is essential if the performance of the ensemble of classifiers needs to be expressed in terms of Area Under the Receiver Operating Curve or some other performance measures that classifications' probability. The experimental results demonstrate the performance improvements obtained by applying the proposed methods to an ensemble of classifiers compared to individual classifiers.
机译:本文提出了一种用于权重动态计算的新方法,该方法可用于通过加权多数投票进行分类汇总的过程。所提出的方法可以用于产生概率分类的分类器的所有二进制分类问题。大多数聚合函数产生的输出仅代表一组分类器的聚合分类,有时这还不够。本文还提出了一种估计聚合分类概率的方法。如果分类器整体的性能需要根据接收器工作曲线下的面积或通过其他性能度量分类的概率来表示,则汇总分类器的估计概率至关重要。实验结果表明,与单独的分类器相比,通过将所提出的方法应用于一组分类器可以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号