首页> 外文会议>Applied simulation amp; modelling >SCALE-UP OF CHEMICAL PROCESS MODELS:RE-CALIBRATING FUNDAMENTAL MODELS USING DATA MINING
【24h】

SCALE-UP OF CHEMICAL PROCESS MODELS:RE-CALIBRATING FUNDAMENTAL MODELS USING DATA MINING

机译:化学过程模型的规模化:使用数据挖掘重新校准基本模型

获取原文
获取原文并翻译 | 示例

摘要

To understanding a chemical kinetic reaction scheme, arnlarge number of experiments are often performed in arn'Lab' or small-scale reactor. The experimental results canrnbe represented by a fundamental mathematical model,rntypically a series of ordinary differential equationsrn(ODEs) that are solved numerically. When the realrnprocess is 'scaled up' to a much larger 'Plant reactor,rnsome of the underlying model's process parameters canrnchange to new, unknown values. This paper proposes arnsimple method to re-calibrate the fundamental modelrnbased on lab data to accurately represent the plantrnprocess. The method involves running the lab scalernfundamental model at a large number of design points,rnrecording the simulation predictions and derivatives withrnrespect to the model inputs. Only a few experiments needrnto be run in the plant, and those data are combined withrnthe simulations in a specially trained support vectorrnmachine (SVM) that simultaneously adjusts its parametersrnto fit both sets of data. The resulting empirical modelrngives an accurate representation of the plant scale process.
机译:为了理解化学动力学反应方案,经常在arn'Lab'或小型反应器中进行大量的实验。实验结果可以用一个基本的数学模型来表示,通常是一系列用数值方法求解的常微分方程。当将实际过程“放大”到更大的“工厂反应堆”时,一些基础模型的过程参数可能会更改为新的未知值。本文提出了一种简单的方法,可以基于实验室数据重新校准基本模型,以准确表示工厂流程。该方法涉及在大量设计点上运行实验室规模的基础模型,并记录关于模型输入的仿真预测和导数。仅需在工厂中进行少量实验,并将这些数据与仿真结合在一起,即可在经过特殊训练的支持向量机(SVM)中进行调整,同时调整其参数以适合两组数据。所得的经验模型可以精确表示工厂规模过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号