首页> 外文会议>Annual International Conference on Network and Information Systems for Computers >Point-of-Interest Recommendation Based on Spatial Clustering in LBSN
【24h】

Point-of-Interest Recommendation Based on Spatial Clustering in LBSN

机译:LBSN中基于空间聚类的兴趣点推荐

获取原文

摘要

In location-based social networks, many studies have been put into forward to improve point-of-interest (POI) recommendation, according to the users' historical check-ins and context aware information. But the spatial distribution feature of the users' check-in has not been well studied. We propose a POI recommendation algorithm based on spatial clustering, through studying whether the users' check-in behaviors have 'active area' differences. Firstly, a spatial clustering algorithm is designed according to the administrative area information of the POI in the location-based social networks, which is combined with users' check-in distribution characteristics. Secondly, the users' ratings information is normalized. Finally, POI recommendation is obtained according to integration each user's check-in spatial clustering subset distribution and user's ratings to social relationships. The experimental results show that the significant improvement and the effectiveness of the method in the precision, recall rate and time performance.
机译:在基于位置的社交网络中,根据用户的历史记录和上下文感知信息,已经提出了许多研究来改善兴趣点(POI)推荐。但是,尚未对用户签到的空间分布特征进行很好的研究。通过研究用户的签到行为是否具有“活动区域”差异,我们提出了一种基于空间聚类的POI推荐算法。首先,根据基于位置的社交网络中POI的管理区域信息,设计了空间聚类算法,并结合用户的签到分布特征。其次,对用户的收视率信息进行归一化。最后,通过整合每个用户的签到空间聚类子集分布和用户对社交关系的评分,获得POI推荐。实验结果表明,该方法在精度,召回率和时间性能上都有明显的提高和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号