基于位置的社交网络(Location Based Social Networks,LBSN)的相关服务推荐越来越多,而兴趣点(Point Of Interest,POI)推荐作为LBSN相关服务中的一项个性化推荐也备受关注,越来越多的学者投入研究.目前,各种基于位置的推荐算法层出不穷,但由于LBSN中的数据极度稀疏的原因,导致许多算法推荐精度不高,本文提出了一种基于用户活动区域划分的元路径推荐算法.首先,根据用户签到以及点评的地点呈现区域性,将用户活动区域分为频繁活动区域和不经常活动区域,根据LBSN结构特征构建用户-活动区域和活动区域-兴趣点之间的二分图模型,其次引入元路径,计算从用户到兴趣点的实例路径的关联度,最后根据关联度大小生成推荐列表.结果表明,该算法较传统的LBSN推荐算法有更好的推荐效果.
展开▼