【24h】

Neighbourhood Components Analysis

机译:邻域成分分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a novel method for learning a Mahalanobis distance measure to be used in the KNN classification algorithm. The algorithm directly maximizes a stochastic variant of the leave-one-out KNN score on the training set. It can also learn a low-dimensional linear embedding of labeled data that can be used for data visualization and fast classification. Unlike other methods, our classification model is non-parametric, making no assumptions about the shape of the class distributions or the boundaries between them. The performance of the method is demonstrated on several data sets, both for metric learning and linear dimensionality reduction.
机译:在本文中,我们提出了一种学习马氏距离度量的新方法,该方法将用于KNN分类算法。该算法直接最大化训练集上遗忘的KNN分数的随机变量。它还可以学习标记数据的低维线性嵌入,该嵌入可用于数据可视化和快速分类。与其他方法不同,我们的分类模型是非参数的,不对类分布的形状或它们之间的边界做任何假设。在度量学习和线性维数减少的几个数据集上证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号