首页> 外文期刊>Biomedical signal processing and control >Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification
【24h】

Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification

机译:使用正则邻域分量分析的时间窗口和频段优化,用于多视图电机图像EEG分类

获取原文
获取原文并翻译 | 示例

摘要

Spatial features optimized at frequency bands have been widely used in motor imagery (MI) based braincomputer interface (BCI) systems. However, using a fixed time window of electroencephalogram (EEG) to extract discriminatory features results in suboptimal MI classification performance because time latency during MI tasks is inconsistent between different subjects. Thus, apart from frequency band optimization, time window optimization is equally important to develop a subject-specific MI-BCI. With time windows, extracted feature space becomes a higher-order tensor problem that requires multi-view learning approaches to optimize features. This study proposes a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In the experiment, we extracted spatial features using common spatial patterns (CSP) from MI related EEG data at multiple time windows and frequency bands and optimized them using the proposed feature selection method. A support vector machine is trained to classify optimized CSP features to identify MI tasks. The proposed method achieved classification accuracies on three public BCI datasets (BCI competition IV dataset 2a, BCI competition III dataset IIIa, and BCI competition IV dataset 2b), which are 82.1 %, 91.7 %, and 84.5 %, respectively. Obtained results are superior to those obtained using standard competing algorithms. Hence, the proposed multi-view learning approach for simultaneous optimization of time windows and frequency bands of MI signals shows the potential to enhance a practical MI BCI device?s performance.
机译:在频带中优化的空间特征已广泛用于基于电机图像(MI)的脑电计算机接口(BCI)系统。然而,使用脑电图(EEG)的固定时间窗口提取歧视性功能导致次优MI分类性能,因为MI任务期间的时间延迟在不同的主题之间不一致。因此,除频带优化外,时间窗口优化同样重要的是开发特定的主题MI-BCI。随着时间的推移,提取的特征空间成为一个更高阶的张量问题,需要多视图学习方法来优化特征。本研究提出了一种基于正则邻域分量分析的新型多视图特征选择方法,同时优化时间窗口和频带。在实验中,我们在多个时间窗口和频带中使用来自MI相关EEG数据的公共空间模式(CSP)的空间特征,并使用所提出的特征选择方法优化它们。培训支持向量机以分类优化的CSP功能以识别MI任务。所提出的方法在三个公共BCI数据集(BCI竞赛IV数据集2A,BCI竞赛III Dataset IIIA和BCI竞赛IV数据集2B)上实现了分类准确性,分别为82.1%,91.7%和84.5%。获得的结果优于使用标准竞争算法获得的结果。因此,用于同时优化时间窗口和MI信号频带的所提出的多视图学习方法显示了增强实用MI BCI设备的潜力性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号