【24h】

Classification of Motor Imagery EEG Based on a Time-Frequency Analysis and Second-Order Blind Identification

机译:基于时频分析和二阶盲识别的运动图像脑电分类

获取原文

摘要

In this paper, two methods for the classification of motor imagery electroencephalogram (EEG) recordings in a brain computer interface (BCI) task was described. The first one is based on a time-frequency analysis of EEG signals. The original EEG signals are converted to time-frequency signals by a function of short time Fourier transforms (STFTs). In another method, we applied second-order blind identification (SOBI), a blind source separation (BSS) algorithm to preprocess EEG data. Subsequently in both of two methods, Fisher class separability criterion was used to select the features. Finally, classification of Motor Imagery EEG evoked by a sequence of randomly mixed left and right motor imagery was performed by a linear classifier or back-propagation neural networks (BPNN), using as inputs the two STFTs timefrequency signals or the two SOBI-recovered SI components or the two EEG channels C3/C4. The results showed that classification accuracy of Motor Imagery EEG was significantly improved by STFTs or SOBI preprocessing.
机译:本文介绍了两种在脑计算机接口(BCI)任务中对运动图像脑电图(EEG)记录进行分类的方法。第一个基于对EEG信号的时频分析。通过短时傅立叶变换(STFT),原始的EEG信号被转换为时频信号。在另一种方法中,我们将二阶盲识别(SOBI),盲源分离(BSS)算法应用于脑电数据的预处理。随后,在两种方法中,均使用Fisher类可分离性准则来选择特征。最后,使用两个STFTs时频信号或两个SOBI恢复的SI作为输入,通过线性分类器或反向传播神经网络(BPNN)对由随机混合的左右运动图像序列引起的运动图像脑电图进行分类。组件或两个EEG通道C3 / C4。结果表明,通过STFT或SOBI预处理可以显着提高Motor Imagery EEG的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号