【24h】

Classification of iRBD and Parkinson's disease patients based on eye movements during sleep

机译:根据睡眠期间眼动情况对iRBD和帕金森氏病患者进行分类

获取原文

摘要

Patients suffering from the sleep disorder idiopathic rapid-eye-movement sleep behavior disorder (iRBD) have been observed to be in high risk of developing Parkinson's disease (PD). This makes it essential to analyze them in the search for PD biomarkers. This study aims at classifying patients suffering from iRBD or PD based on features reflecting eye movements (EMs) during sleep. A Latent Dirichlet Allocation (LDA) topic model was developed based on features extracted from two electrooculographic (EOG) signals measured as parts in full night polysomnographic (PSG) recordings from ten control subjects. The trained model was tested on ten other control subjects, ten iRBD patients and ten PD patients, obtaining a EM topic mixture diagram for each subject in the test dataset. Three features were extracted from the topic mixture diagrams, reflecting “certainty”, “fragmentation” and “stability” in the timely distribution of the EM topics. Using a Naive Bayes (NB) classifier and the features “certainty” and “stability” yielded the best classification result and the subjects were classified with a sensitivity of 95 %, a specificity of 80% and an accuracy of 90 %. This study demonstrates in a data-driven approach, that iRBD and PD patients may exhibit abnorm form and/or timely distribution of EMs during sleep.
机译:已经发现患有睡眠障碍的特发性快速眼动睡眠行为障碍(iRBD)的患者罹患帕金森氏病(PD)的风险很高。因此,在寻找PD生物标记物时必须对其进行分析。这项研究旨在根据反映睡眠期间眼睛运动(EM)的特征对患有iRBD或PD的患者进行分类。一个潜在的狄利克雷分配(LDA)主题模型是基于从两个电眼图(EOG)信号中提取的特征而开发的,这些信号作为来自十个对照受试者的夜间多导睡眠图(PSG)记录的一部分进行了测量。在其他十名对照受试者,十名iRBD患者和十名PD患者中测试了训练后的模型,从而获得了测试数据集中每个受试者的EM主题混合图。从主题混合图中提取了三个特征,分别反映了EM主题的及时分发中的“确定性”,“碎片化”和“稳定性”。使用朴素贝叶斯(NB)分类器,特征“确定性”和“稳定性”产生了最佳分类结果,并且以95%的敏感性,80%的特异性和90%的准确性对受试者进行了分类。这项研究以数据驱动的方法证明,iRBD和PD患者在睡眠期间可能表现出异常形式和/或及时分布EM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号