首页> 外文会议>Alternative lithographic technologies II >Throughput enhancement technique for MAPPER maskless lithography
【24h】

Throughput enhancement technique for MAPPER maskless lithography

机译:MAPPER无掩模光刻的吞吐量增强技术

获取原文
获取原文并翻译 | 示例

摘要

MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing in combination with high speed optical data transport for switching the electron beams. With 13,000 electron beams each delivering a current of 13nA on the wafer, a throughput of 10 wph is realized for 22nm node lithography. By clustering several of these systems together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV.rnThe most mature and reliable electron source currently available that combines a high brightness, a high emission current and uniform emission is the dispenser cathode. For this electron source a reduced brightness of 10~6 A/m~2SrV has been measured, with no restrictions on emission current. With this brightness however it is possible to realize a beam current of 0.3nA (@ 25nm spotsize), which is almost a factor 50 lower than the 13nA that is required for 10 wph.rnThree methods can be distinguished to increase the throughput:rn1. Use an electron source with a 50x higher brightnessrn2. Increase the number of beams and lenses 50xrn3. Patterned beams: Image multiple sub-beams with each projection lensrnMAPPER has selected option 3) 'Patterned beams' as the method to increase the beam current to 13nA. This because an electron source with a 50x higher brightness is simply not available at this time, and increasing the number of beams and lenses 50x leads to undesirable engineering issues.rnDuring the past years MAPPER has been developing the concept of 'Patterned beams'. By imaging 7×7 sub-beams per projection lens the beam current is increased to the required 13nA level. This technique will also be used to maintain throughput at 10 wph for smaller technology nodes by further increasing the number of sub-beams per projection lens.rnIn this paper we will describe the electron optical design used to image these multiple sub-beams per lens, as well as experimental demonstration of this electron optical configuration. Also the writing strategy will be discussed, as well as the first patterning results. One of the key components for 'Patterned beams' is the beam blanker array, since each sub-beam must be switched on and off individually. The design of the blanker deflectors, the circuitry, as well as experimental results of the blanker array will be shown. Finally the roadmap to further technology nodes will be discussed.
机译:MAPPER Lithography正在开发一种无掩模光刻技术,该技术基于大规模并行电子束写入与高速光学数据传输相结合来切换电子束。通过13,000个电子束,每个电子束在晶片上传递13nA的电流,对于22nm节点光刻,实现了10 wph的吞吐量。通过将这些系统中的几个集群在一起,可以在较小的占地面积内实现高吞吐量。这使双图案和EUV具有极高的成本竞争力。替代品目前,最成熟,最可靠的电子源是分配器阴极,它结合了高亮度,高发射电流和均匀发射。对于该电子源,已测得亮度降低了10〜6 A / m〜2SrV,而对发射电流没有限制。然而,利用这种亮度,可以实现0.3nA(@ 25nm点尺寸)的束流,这比10 wph所需的13nA几乎低50倍。可以区分三种方法来提高吞吐量:rn1。请使用亮度高50倍的电子源。将光束和透镜的数量增加50xrn3。图案光束:每个投影透镜对多个子光束成像MAPPER选择了选项3)“图案光束”作为将光束电流增加到13nA的方法。这是因为目前根本无法获得亮度提高50倍的电子源,并且将光束和透镜的数量增加50倍会导致不良的工程问题。在过去的几年中,MAPPER一直在开发“图案化光束”的概念。通过对每个投影透镜成像7×7子光束,光束电流将增加到所需的13nA电平。通过进一步增加每个投影透镜的子光束数量,该技术还将用于将较小技术节点的吞吐量保持在10 wph。在本文中,我们将描述用于对每个透镜的多个子光束成像的电子光学设计,以及该电子光学配置的实验演示。此外,还将讨论写作策略以及第一个构图结果。 “图案化光束”的关键组件之一是光束消隐器阵列,因为每个子光束都必须单独打开和关闭。将显示消隐器偏转器的设计,电路以及消隐器阵列的实验结果。最后,将讨论进一步技术节点的路线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号