【24h】

Temperature-emissivity separation for LWIR sensing using MCMC

机译:使用MCMC进行LWIR感测的温度-发射率分离

获取原文
获取原文并翻译 | 示例

摘要

Signal processing for long-wave infrared (LWIR) sensing is made complicated by unknown surface temperatures in a scene which impact measured radiance through temperature-dependent black-body radiation of in-scene objects. The unknown radiation levels give rise to the temperature-emissivity separation (TES) problem describing the intrinsic ambiguity between an object's temperature and emissivity. In this paper we present a novel Bayesian TES algorithm that produces a probabilistic posterior estimate of a material's unknown temperature and emissivity. The statistical uncertainty characterization provided by the algorithm is important for subsequent signal processing tasks such as classification and sensor fusion. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and exploits conditional linearity to achieve efficient block-wise Gibbs sampling for rapid inference. In contrast to existing work, the algorithm optimally incorporates prior knowledge about in-scene materials via Bayesian priors which may optionally be learned using training data and a material database. Examples demonstrate up to an order of magnitude reduction in error compared to classical filter-based TES methods.
机译:由于场景中未知的表面温度会影响现场对象的依赖于温度的黑体辐射,从而影响测得的辐射,从而使用于长波红外(LWIR)感应的信号处理变得复杂。未知的辐射水平引起了描述物体温度和发射率之间固有模糊性的温度发射率分离(TES)问题。在本文中,我们提出了一种新颖的贝叶斯TES算法,该算法对材料的未知温度和发射率产生概率后验估计。该算法提供的统计不确定性特征对于后续信号处理任务(例如分类和传感器融合)非常重要。该算法基于马尔可夫链蒙特卡洛(MCMC)方法,并利用条件线性度来实现高效的逐块Gibbs采样,以进行快速推理。与现有工作相反,该算法通过贝叶斯先验最优地结合了有关现场材料的先验知识,可以选择使用训练数据和材料数据库来学习先验知识。实例证明,与传统的基于滤波器的TES方法相比,误差降低了一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号