首页> 外文会议>Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XX >An analysis of the nonlinear spectral mixing of didymium and soda-lime glass beads using hyperspectral imagery (HSI) microscopy
【24h】

An analysis of the nonlinear spectral mixing of didymium and soda-lime glass beads using hyperspectral imagery (HSI) microscopy

机译:使用高光谱成像(HSI)显微镜分析did和钠钙玻璃珠的非线性光谱混合

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear spectral mixing occurs when materials are intimately mixed. Intimate mixing is a common characteristic of granular materials such as soils. A linear spectral unmixing inversion applied to a nonlinear mixture will yield subpixel abundance estimates that do not equal the true values of the mixture's components. These aspects of spectral mixture analysis theory are well documented. Several methods to invert (and model) nonlinear spectral mixtures have been proposed. Examples include Hapke theory, the extended endmember matrix method, and kernel-based methods. There is, however, a relative paucity of real spectral image data sets that contain well characterized intimate mixtures. To address this, special materials were custom fabricated, mechanically mixed to form intimate mixtures, and measured with a hyperspectral imaging (HSI) microscope. The results of analyses of visibleear-infrared (VNIR; 400 nm to 900 nm) HSI microscopy image cubes (in reflectance) of intimate mixtures of the two materials are presented. The materials are spherical beads of didymium glass and soda-lime glass both ranging in particle size from 63 μm to 125 μm. Mixtures are generated by volume and thoroughly mixed mechanically. Three binary mixtures (and the two endmembers) are constructed and emplaced in the wells of a 96-well sample plate: 0%/100%, 25%/75%, 50%/50%, 80%/20%, and 100%/0% didymium/soda-lime. Analysis methods are linear spectral unmixing (LSU), LSU applied to reflectance converted to single-scattering albedo (SSA) using Hapke theory, and two kernel-based methods. The first kernel method uses a generalized kernel with a gamma parameter that gauges non-linearity, applying the well-known kernel trick to the least squares formulation of the constrained linear model. This method attempts to determine if each pixel in a scene is linear or non-linear, and adapts to compute a mixture model at each pixel accordingly. The second method uses 'K-hype' with a polynomial (quadratic) kernel. LSU applied to the reflectance spectra of the mixtures produced poor abundance estimates regardless of the constraints applied in the inversion. The 'K-hype' kernel-based method also produced poor fraction estimates. The best performers are LSU applied to the reflectance spectra converted to SSA using Hapke theory and the gamma parameter kernel-based method.
机译:紧密混合材料时会发生非线性光谱混合。紧密混合是颗粒材料(例如土壤)的普遍特征。应用于非线性混合物的线性光谱解混反演将产生不等于混合物成分真实值的子像素丰度估计。光谱混合分析理论的这些方面都有充分的文献记载。已经提出了几种反转(和建模)非线性频谱混合的方法。示例包括Hapke理论,扩展端元矩阵方法和基于内核的方法。但是,相对光谱较少的真实光谱图像数据集包含特征明确的紧密混合物。为了解决这个问题,定制了特殊材料,将其机械混合以形成紧密的混合物,然后用高光谱成像(HSI)显微镜进行测量。给出了两种材料的紧密混合物的可见/近红外(VNIR; 400 nm至900 nm)HSI显微镜图像立方体(反射率)的分析结果。这些材料是钕玻璃和钠钙玻璃的球形珠,它们的粒径都在63μm至125μm之间。混合物是按体积产生的,并在机械上彻底混合。在96孔样品板的孔中构建并放置三种二元混合物(和两个端基):0%/ 100%,25%/ 75%,50%/ 50%,80%/ 20%和100 %/ 0%ym /苏打石灰。分析方法是线性光谱分解(LSU),使用Hapke理论将LSU应用于反射率转换为单散射反照率(SSA)和两种基于核的方法。第一种核方法使用具有伽马参数的广义核,该伽马参数可测量非线性,并将众所周知的核技巧应用于约束线性模型的最小二乘公式。该方法尝试确定场景中的每个像素是线性的还是非线性的,并适应于相应地在每个像素处计算混合模型。第二种方法使用具有多项式(二次)核的“ K-hype”。不管反演中施加的限制如何,应用于混合物的反射光谱的LSU产生的丰度估计都很差。基于“ K-hype”核的方法也得出较差的分数估计。 LSU表现最佳,适用于使用Hapke理论和基于伽玛参数核的方法转换为SSA的反射光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号