首页> 美国政府科技报告 >Analysis of the Nonlinear Spectral Mixing of Didymium and Soda-Lime Glass Beads Using Hyperspectral Imagery (HSI) Microscopy
【24h】

Analysis of the Nonlinear Spectral Mixing of Didymium and Soda-Lime Glass Beads Using Hyperspectral Imagery (HSI) Microscopy

机译:用高光谱图像(HsI)显微镜分析Didymium和钠钙玻璃珠的非线性光谱混合

获取原文

摘要

Nonlinear spectral mixing occurs when materials are intimately mixed. Intimate mixing is a common characteristic of granular materials such as soils. A linear spectral unmixing inversion applied to a nonlinear mixture will yield subpixel abundance estimates that do not equal the true values of the mixture's components. These aspects of spectral mixture analysis theory are well documented. Several methods to invert (and model) nonlinear spectral mixtures have been proposed. Examples include Hapke theory, the extended endmember matrix method, and kernel-based methods. There is however, a relative paucity of real spectral image data sets that contain well characterized intimate mixtures. To address this, special materials were custom fabricated, mechanically mixed to form intimate mixtures, and measured with a hyperspectral imaging (HSI) microscope. The results of analyses of visible/near-infrared (VNIR; 400 nm to 900 nm) HSI microscopy image cubes (in reflectance) of intimate mixtures of the two materials are presented. The materials are spherical beads of didymium glass and soda-lime glass both ranging in particle size from 63 mm to 125 mm. Mixtures are generated by volume and thoroughly mixed mechanically. Three binary mixtures (and the two endmembers) are constructed and emplaced in the wells of a 96-well sample plate. Analysis methods are linear spectral unmixing (LSU), LSU applied to reflectance converted to single-scattering albedo (SSA) using Hapke theory, and two kernel- based methods. The first kernel method uses a generalized kernel with a gamma parameter that gauges non-linearity, applying the well-known kernel trick to the least squares formulation of the constrained linear model. This method attempts to determine if each pixel in a scene is linear or non-linear, and adapts to compute a mixture model at each pixel accordingly. The second method uses 'K-hype' with a polynomial (quadratic) kernel.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号