首页> 外文会议>Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XX >Hyperspectral target detection using graph theory models and manifold geometry via an adaptive implementation of locally linear embedding
【24h】

Hyperspectral target detection using graph theory models and manifold geometry via an adaptive implementation of locally linear embedding

机译:通过局部线性嵌入的自适应实现,使用图论模型和流形几何图形进行高光谱目标检测

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images comprise, by design, high dimensional image data. However, research has shown that for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m << d. In the remote sensing community, this has led to a recent increase in the use of non-linear manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data. With graph theory and manifold learning based models, the only assumption is that the data reside on an underlying manifold. In previous publications, we have shown that manifold coordinate approximation using locally linear embedding (LLE) is a viable pre-processing step for target detection with the Adaptive Cosine/Coherence Estimator (ACE) algorithm. Here, we improve upon that methodology using a more rigorous, data-driven implementation of LLE that incorporates the injection of a "cloud" of target pixels and the Spectral Angle Mapper (SAM) detector. The LLE algorithm, which holds that the data is locally linear, is typically governed by a user defined parameter k, indicating the number of nearest neighbors to use in the initial graph model. We use an adaptive approach to building the graph that is governed by the data itself and does not rely upon user input. This implementation of LLE can yield greater separation between the target pixels and the background pixels in the manifold space. We present an analysis of target detection performance in the manifold coordinates using scene-derived target spectra and laboratory-measured target spectra across two different data sets.
机译:根据设计,高光谱图像包括高维图像数据。但是,研究表明,对于d维高光谱图像,数据固有地占据m维空间是典型的,其中m << d。在遥感界,这导致了非线性流形学习的最新使用,其目的是表征固有的高光谱数据所固有的嵌入式低维,非线性流形。经典的高光谱数据模型包括统计模型,线性子空间模型和线性混合模型,但这些模型可能会对数据的分布设置限制性假设。使用图论和基于流形学习的模型,唯一的假设是数据驻留在基础流形上。在以前的出版物中,我们已经表明,使用局部线性嵌入(LLE)进行流形坐标逼近是使用自适应余弦/相干估计器(ACE)算法进行目标检测的可行预处理步骤。在这里,我们使用更严格的,数据驱动的LLE实现改进了该方法,该实现结合了目标像素“云”和光谱角度映射器(SAM)检测器的注入。认为数据是局部线性的LLE算法通常由用户定义的参数k控制,该参数指示在初始图模型中要使用的最近邻居的数量。我们使用一种自适应方法来构建由数据本身控制且不依赖用户输入的图形。 LLE的此实现可以在流形空间中的目标像素和背景像素之间产生更大的分隔。我们使用两个不同数据集的场景衍生目标光谱和实验室测量目标光谱,对流形坐标中的目标检测性能进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号