首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV >A 2DPCA-based method for automatic selection of hyperspectral image bands for color visualization
【24h】

A 2DPCA-based method for automatic selection of hyperspectral image bands for color visualization

机译:基于2DPCA的自动选择高光谱图像带以进行颜色可视化的方法

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imagery (HSI) is a relatively new technology capable of relaying intensity information gathered from both visible and non-visible ranges of the electromagnetic spectrum. HSI images can contain hundreds of bands, which present a problem when an image analyst must select the most relevant bands from such an image for visualization, particularly when the bands that are within the range of human vision are either not present or heavily distorted. It is proposed here that two-dimensional principal component analysis (2DPCA) can aid in the automatic selection of the bands from an HSI image that would best reflect visual information. The method requires neither prior knowledge of the image contents nor the association between spectral bands and their center wavelengths.
机译:高光谱图像(HSI)是一种相对较新的技术,能够中继从电磁光谱的可见范围和不可见范围收集的强度信息。 HSI图像可能包含数百个波段,当图像分析人员必须从此类图像中选择最相关的波段以进行可视化时,尤其是当人类视觉范围内的波段不存在或出现严重失真时,这就会带来问题。在此建议,二维主成分分析(2DPCA)可以帮助从HSI图像中自动选择能最好地反映视觉信息的波段。该方法既不需要图像内容的先验知识,也不需要光谱带与其中心波长之间的关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号