首页> 外文会议>Algorithms for Synthetic Aperture Radar Imagery XXIV >Exploiting the sparsity of edge information in synthetic aperture radar imagery for speckle reduction
【24h】

Exploiting the sparsity of edge information in synthetic aperture radar imagery for speckle reduction

机译:在合成孔径雷达图像中利用边缘信息的稀疏性来减少斑点

获取原文
获取原文并翻译 | 示例

摘要

Synthetic aperture radar (SAR) images are corrupted with speckle noise, which manifests as a multiplicative gamma noise in homogeneous regions, and reduces the contrast in imagery, making detection and classification using SAR images a difficult task. Many speckle reduction techniques aim to reduce this noise without including available prior knowledge about the speckle and the scene contents. In this investigation, we develop a new technique for speckle reduction which incorporates both the statistical model of speckle and the a priori knowledge about the sparsity of edges present in the scene. Using the proposed technique, we despeckle a synthetic image, a SAR image from the MSTAR1 data set and a SAR image from the Gotcha2 data set. Our results show that, with our method, we are able to visually improve the quality of SAR images. Various speckle reduction metrics are used to show quantitatively that our techniques reduce speckle in homogeneous areas beyond comparable methods, while maintaining edge and target intensity information.
机译:合成孔径雷达(SAR)图像被斑点噪声破坏,该斑点噪声在均匀区域表现为乘性伽马噪声,并降低了图像的对比度,这使得使用SAR图像进行检测和分类变得困难。许多减少斑点的技术旨在减少这种噪声,而又不包括关于斑点和场景内容的现有先验知识。在这项调查中,我们开发了一种用于减少斑点的新技术,该技术结合了斑点的统计模型和有关场景中存在的边缘稀疏性的先验知识。使用提出的技术,我们对合成图像,来自MSTAR1数据集的SAR图像和来自Gotcha2数据集的SAR图像进行散斑。我们的结果表明,使用我们的方法,我们能够在视觉上改善SAR图像的质量。各种散斑减少指标用于定量地表明,我们的技术可以在同类边缘区域内降低斑点,这是可比方法无法实现的,同时还能保持边缘和目标强度信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号