首页> 外文会议>Algorithms - ESA 2011 >Paths, Flowers and Vertex Cover
【24h】

Paths, Flowers and Vertex Cover

机译:路径,花朵和顶点覆盖

获取原文
获取原文并翻译 | 示例

摘要

It is well known that in a bipartite (and more generally in a Konig) graph, the size of the minimum vertex cover is equal to the size of the maximum matching. We first address the question whether (and if not when) this property still holds in a Konig graph if we insist on forcing one of the two vertices of some of the matching edges in the vertex cover solution. We characterize such graphs using the classical notions of augmenting paths and flowers used in Edmonds' matching algorithm. Using this characterization, we develop an O*(9~k)1 algorithm for the question of whether a general graph has a vertex cover of size at most 771 + k where m is the size of the maximum matching. Our algorithm for this well studied Above Guarantee Vertex Cover problem uses the technique of iterative compression and the notion of important separators, and improves the runtime of the previous best algorithm that took O*(15~k) time. As a consequence of this result we get that well known problems like Almost 2 SAT (deleting at most k clauses to get a satisfying 2 SAT formula) and Konig Vertex Deletion (deleting at most k vertices to get a Konig graph) also have an algorithm with O*(9~k) running time, improving on the previous bound of O*(15~k).
机译:众所周知,在二部图(更常见的是在Konig图中)中,最小顶点覆盖的大小等于最大匹配的大小。首先,我们要解决的问题是,如果我们坚持在顶点覆盖解决方案中强制某些匹配边的两个顶点之一,那么该属性是否仍保留在Konig图中。我们使用Edmonds匹配算法中使用的增加路径和花朵的经典概念来表征此类图。使用这种特征,我们开发了一个O *(9〜k)1算法来解决一般图形是否具有最大为771 + k的顶点覆盖的问题,其中m是最大匹配的大小。我们针对此经过充分研究的“高于保证顶点覆盖”问题的算法使用了迭代压缩技术和重要分隔符的概念,并改善了以前耗时O *(15〜k)的最佳算法的运行时间。结果,我们得到了众所周知的问题,例如几乎2 SAT(最多删除k个子句以获得满意的2 SAT公式)和Konig顶点删除(最多删除k个顶点以获取Konig图)也有一个算法使用O *(9〜k)的运行时间,改进了O *(15〜k)的上一个边界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号