首页> 外文会议>Algorithms - ESA 2006; Lecture Notes in Computer Science; 4168 >Parallel Machine Scheduling Through Column Generation: Minimax Objective Functions
【24h】

Parallel Machine Scheduling Through Column Generation: Minimax Objective Functions

机译:通过列生成的并行机器调度:Minimax目标函数

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider one of the basic problems in scheduling and project management: scheduling on parallel identical machines. We present a solution framework for a number of scheduling problems in which the goal is to find a feasible schedule that minimizes some objective function of the minimax type on a set of parallel, identical machines, subject to release dates, deadlines, and/or generalized precedence constraints. Our framework is based on column generation. Although column generation has been successfully applied to many parallel machine scheduling problems with objective functions of the minsum type, the number of applications for minimax objective functions is still small.rnWe determine a lower bound on the objective function in the following way. We first turn the minimization problem into a decision problem by bounding the outcome value. We then ask ourselves 'Are m machines enough to feasibly accommodate all jobs?'. We formulate this as an integer linear programming problem and we determine a high quality lower bound by applying column generation to the LP-relaxation; if this lower bound is more than m, then we can conclude infeasibility. To speed up the process, we compute an intermediate lower bound based on the outcome of the pricing problem. As the pricing problem is intractable for many variants of the original scheduling problem, we mostly solve it approximately by applying local search, but once in every 50 iterations or when local search fails, we use a time-indexed integer linear programming formulation to solve the pricing problem.rnAfter having derived the lower bound on the objective function of the original scheduling problem, we try to find a matching upper bound by identifying a feasible schedule with objective function value equal to this lower bound. Our computational results show that our lower bound is so strong that this almost always succeeds. We are able to solve problems with up to 160 jobs and 10 machines in 10 minutes on average.
机译:在本文中,我们考虑了调度和项目管理中的基本问题之一:并行并行机器上的调度。我们提出了一个针对许多调度问题的解决方案框架,其中的目标是找到可行的调度,以在发布日期,截止日期和/或通用的条件下,在一组并行的相同机器上最小化minimax类型的某些目标函数优先约束。我们的框架基于列生成。尽管列生成已成功地应用于许多具有minsum类型的目标函数的并行机器调度问题,但是minimax目标函数的应用数量仍然很少。我们通过以下方式确定目标函数的下限。我们首先通过限制结果值,将最小化问题转化为决策问题。然后,我们问自己:“一台机器足以应付所有工作吗?”。我们将此公式化为整数线性规划问题,并通过将列生成应用于LP松弛来确定高质量下界;如果此下限大于m,则可以得出不可行的结论。为了加快这一过程,我们根据定价问题的结果计算出一个中间下限。由于定价问题对于原始调度问题的许多变体来说都是棘手的,因此我们主要通过应用局部搜索来解决此问题,但是每50次迭代中一次或局部搜索失败时,我们使用时间索引整数线性规划公式来求解定价问题。在推导原始调度问题的目标函数的下限之后,我们尝试通过确定目标函数值等于该下限的可行调度来找到匹配的上限。我们的计算结果表明,我们的下限非常强,几乎总是成功。我们平均能够在10分钟内解决多达160个作业和10台机器的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号