首页> 外文会议>Agents and data mining interaction. >Agent-Based Cluster Analysis of Tropical Cyclone Tracks in the Western North Pacific
【24h】

Agent-Based Cluster Analysis of Tropical Cyclone Tracks in the Western North Pacific

机译:基于代理的北太平洋西部热带气旋路径的聚类分析

获取原文
获取原文并翻译 | 示例

摘要

The clustering model integrating Finite Mixture Model (FMM) and classical Expectation-Maximum (EM) algorithm has been applied to tropical cyclone (TC) tracks during the last decade. However, the efficiency of classical EM algorithm is insufficiently good and the robustness of the model is not verified. Besides, it is inconvenient for users to manually choose the parameters for the cluster analysis. In order to improve the efficiency of classical EM algorithm, the "Lazy-ψa2" EM is proposed by integrating Lazy EM algorithm and ψa2 algorithm. Sensitivity analysis is conducted to ensure the insensitivity of the clustering model to the amount of data set. The cluster analysis is implemented on an agent-based framework by which the tool can automatically choose the parameters by evaluating the clustering performance. TC tracks in western North Pacific from 1949 to 2006 are classified into 12 clusters by the probabilistic clustering model that is solved by "Lazy-¥a2" EM algorithm. The log-likelihood is taken as the performance indicator. Elaborate comparisons are made between the present cluster analysis and other cluster analyses related to TC tracks.
机译:在过去的十年中,将有限混合模型(FMM)和经典的最大期望(EM)算法相结合的聚类模型已应用于热带气旋(TC)轨道。然而,经典EM算法的效率不够好,并且模型的鲁棒性尚未得到验证。此外,用户手动选择用于聚类分析的参数是不方便的。为了提高经典EM算法的效率,将Lazy EM算法和ψa2算法相结合,提出了“Lazy-ψa2” EM。进行敏感性分析以确保聚类模型对数据集的敏感性。群集分析是在基于代理的框架上实施的,通过该框架,该工具可以通过评估群集性能来自动选择参数。利用“ Lazy-¥a2” EM算法求解的概率聚类模型,将1949年至2006年北太平洋西部的TC航迹分为12个聚类。对数可能性被用作性能指标。在当前的聚类分析和与TC磁道相关的其他聚类分析之间进行了详尽的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号