首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.2; Lecture Notes in Computer Science; 4492 >A Parallel RBFNN Classifier Based on S-Transform for Recognition of Power Quality Disturbances
【24h】

A Parallel RBFNN Classifier Based on S-Transform for Recognition of Power Quality Disturbances

机译:基于S变换的并联RBFNN分类器在电能质量扰动识别中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel parallel RBFNN (Radial Basis Function Neural Network) classifier based on S-transform for recognition and classification of PQ (Power Quality) disturbances. S-transform is used to extract feature vectors, while the constructed parallel RBFNN classifier is used to recognize and classify PQ disturbances according to the extracted feature vectors. The parallel RBFNN classifier consists of eight sub-networks, each of which is only able to recognize one type of disturbance. In order to improve the convergence performance of RBFNN and optimize the number of hidden layer nodes, a dynamic clustering algorithm which clusters all training samples to determine the number of hidden layer nodes is proposed. Simulation and test results demonstrate that the method proposed to recognize and classify PQ disturbances is correct and feasible, and that the RBFNN classifier based on the dynamic clustering algorithm has a faster convergence speed and a higher correct identification rate.
机译:本文提出了一种基于S变换的新型并行RBFNN(径向基函数神经网络)分类器,用于PQ(电能质量)扰动的识别和分类。 S变换用于提取特征向量,而构造的并行RBFNN分类器则用于根据提取的特征向量对PQ干扰进行识别和分类。并行RBFNN分类器由八个子网组成,每个子网只能识别一种类型的干扰。为了提高RBFNN的收敛性能并优化隐层节点的数量,提出了一种动态聚类算法,对所有训练样本进行聚类以确定隐层节点的数量。仿真和测试结果表明,提出的PQ扰动识别和分类方法是正确可行的,基于动态聚类算法的RBFNN分类器收敛速度更快,正确识别率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号