首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >A Rough Set and Fuzzy Neural Petri Net Based Method for Dynamic Knowledge Extraction, Representation and Inference in Cooperative Multiple Robot System
【24h】

A Rough Set and Fuzzy Neural Petri Net Based Method for Dynamic Knowledge Extraction, Representation and Inference in Cooperative Multiple Robot System

机译:协同多机器人系统中基于粗糙集和模糊神经Petri网的动态知识提取,表示和推理方法

获取原文
获取原文并翻译 | 示例

摘要

In cooperative multiple robot systems (CMRS), dynamic knowledge representation and inference is the key in scheduling robots to fulfill the cooperation requirements. The first goal of this work is to use rough set based rules generation method to extract dynamic knowledge of our CMRS. Kang's rough set based rules generation method is used to get fuzzy dynamic knowledge from practical decision data. The second goal of this work is to use Fuzzy Neural Petri nets (FNPN) to represent and infer the dynamic knowledge on the base of dynamic knowledge extraction with self-learning ability. In particular, we investigate a new way to extract, represent and infer dynamic knowledge with self-learning ability in CMRS. Finally, the effectiveness of the dynamic knowledge extraction, representation and inference procedure are demonstrated.
机译:在协作多机器人系统(CMRS)中,动态知识表示和推理是调度机器人以满足协作需求的关键。这项工作的首要目标是使用基于粗糙集的规则生成方法来提取我们CMRS的动态知识。康的基于粗糙集的规则生成方法用于从实际决策数据中获取模糊动态知识。这项工作的第二个目标是使用模糊神经Petri网(FNPN)在具有自学习能力的动态知识提取的基础上表示和推断动态知识。特别是,我们研究了一种在CMRS中提取,表示和推断具有自学习能力的动态知识的新方法。最后,证明了动态知识提取,表示和推理过程的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号