首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >Exponential Stability of Discrete-Time Cohen-Grossberg Neural Networks with Delays
【24h】

Exponential Stability of Discrete-Time Cohen-Grossberg Neural Networks with Delays

机译:时滞离散Cohen-Grossberg神经网络的指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

Discrete-time Cohen-Grossberg neural networks(CGNNs) are studied in this paper. Several sufficient conditions are obtained to ensure .the global exponential stability of the discrete-time systems of CGNNs with delays based on Lyapunov methods. The obtained results have not assume the symmetry of the connection matrix, and monotonicity, bound-ness of the activation functions.
机译:研究了离散时间的Cohen-Grossberg神经网络(CGNN)。基于Lyapunov方法,得到了几个充分的条件来保证具有时滞的CGNN离散系统的全局指数稳定性。所获得的结果没有假设连接矩阵的对称性以及激活函数的单调性,有界性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号