首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >Optimal Clustering-Based ART1 Classification in Bioinformatics: G-Protein Coupled Receptors Classification
【24h】

Optimal Clustering-Based ART1 Classification in Bioinformatics: G-Protein Coupled Receptors Classification

机译:生物信息学中基于最佳聚类的ART1分类:G蛋白偶联受体分类

获取原文
获取原文并翻译 | 示例

摘要

Protein sequence data have been revealed in current genome research and have been noticed in demand of classifier for new protein classification. This paper proposes the optimal clustering-based ART1 classifier for the GPCR data classification and processes the GPCR data classification. We focuses on a demand of optimal classifier system for protein sequence data classification. The optimal clustering-based ART1 classifier reduces processing cost for classification effectively. We compare classification success rate to those of Back-propagation Neural Network and SVM. In experimental result of the optimal clustering-based ART1 classifier, classification success rate of Class A group is 99.7% and that of the others group is 96.6%. This result demonstrates that the optimal clustering-based ART1 classifier is useful to the GPCR data classification. The classification processing time of the optimal clustering-based ART1 classifier is the 27% less than that of the Backpropagation Neural Network and is the 39% less than that of the SVM in an optimal clustering rate which is 15%. And the classification processing time of the optimal clustering-based ART1 classifier is the 39% less than that of the optimal clustering-based ART1 classifier in a prediction success rate which is 96%. This result demonstrates that the optimal clustering-based ART1 classifier provides the high performance classification and the low processing cost in the GPCR data classification.
机译:在当前的基因组研究中已经揭示了蛋白质序列数据,并且已经注意到分类器对新蛋白质分类的需求。本文提出了一种基于最优聚类的ART1分类器,用于GPCR数据分类,并对GPCR数据分类进行了处理。我们专注于蛋白质序列数据分类的最佳分类系统的需求。基于最优聚类的ART1分类器有效降低了分类的处理成本。我们将分类成功率与反向传播神经网络和SVM进行比较。在基于最优聚类的ART1分类器的实验结果中,A类组的分类成功率为99.7%,其他组的分类成功率为96.6%。该结果表明,基于最佳聚类的ART1分类器对于GPCR数据分类是有用的。基于最优聚类的ART1分类器的分类处理时间比反向传播神经网络的分类处理时间少27%,比基于SVM的最优聚类率为15%的分类处理时间少39%。在预测成功率为96%的情况下,基于最佳聚类的ART1分类器的分类处理时间比基于最佳聚类的ART1分类器的分类处理时间少39%。该结果表明,基于最佳聚类的ART1分类器在GPCR数据分类中提供了高性能分类和低处理成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号