首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >A Hybrid Unscented Kalman Filter and Support Vector Machine Model in Option Price Forecasting
【24h】

A Hybrid Unscented Kalman Filter and Support Vector Machine Model in Option Price Forecasting

机译:期权价格预测中的混合无味卡尔曼滤波和支持向量机模型

获取原文
获取原文并翻译 | 示例

摘要

This study develops a hybrid model that combines unscented Kalman filters (UKFs) and support vector machines (SVMs) to implement an online option price predictor. In the hybrid model, the UKF is used to infer latent variables and make a prediction based on the Black-Scholes formula, while the SVM is employed to capture the nonlinear residuals between the actual option prices and the UKF predictions. Taking option data traded in Taiwan Futures Exchange, this study examined the forecasting accuracy of the proposed model, and found that the new hybrid model is superior to pure SVM models or hybrid neural network models in terms of three types of options. This model can also help investors for reducing their risk in online trading.
机译:这项研究开发了一种混合模型,该模型结合了无味卡尔曼滤波器(UKF)和支持向量机(SVM)来实现在线期权价格预测器。在混合模型中,UKF用于推断潜在变量并基于Black-Scholes公式进行预测,而SVM用于捕获实际期权价格与UKF预测之间的非线性残差。本研究以台湾期货交易所的期权数据为基础,研究了该模型的预测准确性,发现在三种类型的期权方面,新的混合模型优于纯SVM模型或混合神经网络模型。该模型还可以帮助投资者降低在线交易中的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号