首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >A Rough Set Approach to Classifying Web Page Without Negative Examples
【24h】

A Rough Set Approach to Classifying Web Page Without Negative Examples

机译:不带负例的粗糙集网页分类方法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the problem of building Web page classifiers using positive and unlabeled examples, and proposes a more principled technique to solving the problem based on tolerance rough set and Support Vector Machine (SVM). It uses tolerance classes to approximate concepts existed in Web pages and enrich the representation of Web pages, draws an initial approximation of negative example. It then iteratively runs SVM to build classifier which maximizes margins to progressively improve the approximation of negative example. Thus, the class boundary eventually converges to the true boundary of the positive class in the feature space. Experimental results show that the novel method outperforms existing methods significantly.
机译:本文研究了使用正例和未标记示例构建网页分类器的问题,并提出了一种基于原则的技术来解决此问题,该方法基于容差粗糙集和支持向量机(SVM)。它使用容差类对网页中存在的概念进行近似,并丰富了网页的表示形式,从而得出了负面示例的初步近似。然后,它迭代运行SVM来构建分类器,该分类器将使余量最大化,从而逐步提高否定示例的逼近度。因此,类别边界最终会收敛到特征空间中正类别的真实边界。实验结果表明,该新方法明显优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号