首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >Application of Hybrid Pattern Recognition for Discriminating Paddy Seeds of Different Storage Periods Based on Vis/NIRS
【24h】

Application of Hybrid Pattern Recognition for Discriminating Paddy Seeds of Different Storage Periods Based on Vis/NIRS

机译:基于Vis / NIRS的混合模式识别在不同贮藏期水稻种子识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Hybrid pattern recognition was put forward to discriminate paddy seeds of four different storage periods based on visibleear infrared reflectance spectroscopy (Vis/NIRS). The hybrid pattern recognition included extracting feature and building classifier. A total of 210 samples of paddy seeds, which belonged to four classes, were used for collecting Vis/NIR spectra (325-1075 nm) using a field spectroradiometer. The hybrid pattern recognition was integrated with wavelet transform (WT), principal component analysis (PCA) and artificial neural networks (ANN) models. WT was used to eliminate noises and extract characteristic information from spectral data. The characteristic information could be visualized in principal components (PCs) space, in which the structures correlative with the storage periods could be discovered. The first eight PCs, which accounted for 99.94% of the raw spectral data variance, were used as input of the ANN mode, and the model yielded high discrimination accuracy rates of 100%, 100%, 100% and 90% for four classes' samples respectively.
机译:提出了基于可见/近红外反射光谱(Vis / NIRS)的混合模式识别方法,以区分四个不同存储期的水稻种子。混合模式识别包括提取特征和建筑物分类器。总共使用了210个属于四类的水稻种子样品,使用现场分光光度计收集了Vis / NIR光谱(325-1075 nm)。混合模式识别与小波变换(WT),主成分分析(PCA)和人工神经网络(ANN)模型集成在一起。 WT用于消除噪声并从光谱数据中提取特征信息。可以在主成分(PC)空间中可视化特征信息,在其中可以发现与存储周期相关的结构。前八台PC占原始光谱数据差异的99.94%,被用作ANN模式的输入,该模型对四个类别的识别率分别为100%,100%,100%和90%分别取样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号