首页> 外文会议>Advances in image and graphics technologies >Research of Remote Sensing Image Compression Technology Based on Compressed Sensing
【24h】

Research of Remote Sensing Image Compression Technology Based on Compressed Sensing

机译:基于压缩感知的遥感图像压缩技术研究

获取原文
获取原文并翻译 | 示例

摘要

Compressed Sensing (CS) theory is a new method of signal acquisition and processing proposed in recent years.With small amount of sampling data recovering original data to precisely reconstruct sparse signal or compression signal, the theory breaks though the restriction of Nyquist sampling theorem.CS can avoid enormous sampling data waste but also reduce the complexity of image coding.This paper reviews the basic theory of CS and its three key points, including signal sparse representation, design of measurement matrix and reconstruction algorithms.Then, the application of CS in the field of remote sensing image compression technology is studied.Using MATLAB software, we do a series of CS emulation experiments compared with the traditional compression methods.The results show that the proposed method has a good performance on the remote sensing image compression.
机译:压缩感知(CS)理论是近年来提出的一种新的信号获取和处理方法,由于少量的采样数据可以恢复原始数据以精确重建稀疏信号或压缩信号,因此该理论突破了Nyquist采样定理的局限。既避免了采样数据的大量浪费,又降低了图像编码的复杂度。本文回顾了CS的基本理论及其三个关键点,包括信号稀疏表示,测量矩阵的设计和重构算法。与传统的压缩方法相比,利用MATLAB软件进行了一系列的CS仿真实验。结果表明,该方法在遥感图像压缩方面具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号