首页> 外文会议>Advances in computational intelligence. >Predictive Learning, Knowledge Discovery and Philosophy of Science
【24h】

Predictive Learning, Knowledge Discovery and Philosophy of Science

机译:预测学习,知识发现和科学哲学

获取原文
获取原文并翻译 | 示例

摘要

Various disciplines, such as machine learning, statistics, data mining and artificial neural networks, are concerned with estimation of data-analytic models. A common theme among all these methodologies is estimation of predictive models from data. In our digital age, an abundance of data and cheap computing power offers hope of knowledge discovery via application of statistical and machine learning algorithms to empirical data. This data-analytic knowledge has similarities and differences with classical scientific knowledge. For example, any scientific theory can be viewed as an inductive theory because it generalizes over a finite number of observations (or experiments). The philosophical aspects of induction and knowledge discovery have been thoroughly explored in Western philosophy of science. This philosophical analysis dates back to Kant and Hume. Any knowledge involves a combination of hypotheses/ideas and empirical data. In the modern digital age, the balance between ideas (mental constructs) and observed data (facts) has completely shifted. Classical scientific knowledge was produced mainly by a stroke of genius (e.g., Newton, Maxwell, and Einstein). In contrast, much of modern knowledge in life sciences and social sciences is derived via data-analytic modeling. We argue that such data-driven knowledge can be properly described following the methodology of predictive learning originally developed in VC-theory. This paper presents a brief survey of the philosophical concepts related to inductive inference, and then extends these ideas to predictive data-analytic knowledge discovery. We contrast the differences between classical first-principle knowledge, data-analytic knowledge and beliefs. Several application examples are used to illustrate the differences between classical statistical and predictive learning approaches to data-analytic modeling. Finally, we discuss interpretation of data-analytic models under predictive learning framework.
机译:机器学习,统计,数据挖掘和人工神经网络等各种学科都与数据分析模型的估计有关。所有这些方法中的一个共同主题是根据数据估算预测模型。在我们的数字时代,丰富的数据和廉价的计算能力为通过将统计和机器学习算法应用于经验数据提供了发现知识的希望。这种数据分析知识与经典科学知识有异同。例如,任何科学理论都可以归纳为理论,因为它可以概括有限数量的观察(或实验)。归纳法和知识发现的哲学方面已在西方科学哲学中进行了深入探讨。这种哲学分析可以追溯到康德和休ume。任何知识都包含假设/思想和经验数据的组合。在现代数字时代,观念(心理建构)和观察数据(事实)之间的平衡已经完全改变。古典科学知识主要是由天才的笔触产生的(例如,牛顿,麦克斯韦和爱因斯坦)。相反,生命科学和社会科学中的许多现代知识都是通过数据分析模型得出的。我们认为,这种数据驱动的知识可以按照最初在VC理论中开发的预测性学习方法来正确描述。本文简要介绍了与归纳推理有关的哲学概念,然后将这些思想扩展到了预测性数据分析知识发现中。我们对比了经典第一原理知识,数据分析知识和信念之间的差异。几个应用示例用于说明经典的统计学习方法和预测性学习方法之间的区别,以进行数据分析。最后,我们讨论了在预测学习框架下对数据分析模型的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号