首页> 外文会议>Advances in computational intelligence. >Multiagent Learning through Neuroevolution
【24h】

Multiagent Learning through Neuroevolution

机译:通过神经进化进行多主体学习

获取原文
获取原文并翻译 | 示例

摘要

Neuroevolution is a promising approach for constructing intelligent agents in many complex tasks such as games, robotics, and decision making. It is also well suited for evolving team behavior for many multiagent tasks. However, new challenges and opportunities emerge in such tasks, including facilitating cooperation through reward sharing and communication, accelerating evolution through social learning, and measuring how good the resulting solutions are. This paper reviews recent progress in these three areas, and suggests avenues for future work.
机译:神经进化是一种在许多复杂任务(如游戏,机器人和决策)中构建智能主体的有前途的方法。它也非常适合用于许多多代理任务的不断发展的团队行为。但是,此类任务中出现了新的挑战和机遇,包括通过奖励分享和沟通促进合作,通过社会学习加速发展以及衡量最终解决方案的质量。本文回顾了这三个领域的最新进展,并提出了未来工作的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号