首页> 外文期刊>Neural computation >Toward Nonlinear Local Reinforcement Learning Rules Through Neuroevolution
【24h】

Toward Nonlinear Local Reinforcement Learning Rules Through Neuroevolution

机译:通过神经进化走向非线性局部强化学习规则

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of designing local reinforcement learning rules for artificial neural network (ANN) controllers. Motivated by the universal approximation properties of ANNs, we adopt an ANN representation for the learning rules, which are optimized using evolutionary algorithms. We evaluate the ANN rules in partially observable versions of four tasks: the mountain car, the acrobot, the cart pole balancing, and the nonstationary mountain car. For testing whether such evolved ANN-based learning rules perform satisfactorily, we compare their performance with the performance of SARSA(λ) with tile coding, when the latter is provided with either full or partial state information. The comparison shows that the evolved rules perform much better than SARSA(λ) with partial state information and are comparable to the one with full state information, while in the case of the nonstationary environment, the evolved rule is much more adaptive. It is therefore clear that the proposed approach can be particularly effective in both partially observable and nonstationary environments. Moreover, it could potentially be utilized toward creating more general rules that can be applied in multiple domains and transfer learning scenarios.
机译:我们考虑为人工神经网络(ANN)控制器设计局部强化学习规则的问题。基于人工神经网络的通用逼近特性,我们对学习规则采用了人工神经网络表示,并使用进化算法对其进行了优化。我们以四个任务的部分可观察版本评估ANN规则:山地车,杂技机器人,手推车杆平衡和非平稳山地车。为了测试这种进化的基于ANN的学习规则是否令人满意,我们将它们的性能与使用瓦片编码的SARSA(λ)的性能进行比较(当瓦片提供全部或部分状态信息时)。比较表明,演化规则的性能要比具有部分状态信息的SARSA(λ)好得多,并且与具有完整状态信息的规则相当,而在非平稳环境下,演化规则的适应性要强得多。因此,很明显,所提出的方法在部分可观察的和非平稳的环境中都可以特别有效。而且,它可能会被用于创建更通用的规则,这些规则可应用于多个领域并转移学习场景。

著录项

  • 来源
    《Neural computation》 |2013年第11期|3020-3043|共24页
  • 作者单位

    Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号