首页> 外文会议>Advances in computation and intelligence >Sliding-window Recursive PLS Based Soft Sensing Model and Its Application to the Quality Control of Rubber Mixing Process
【24h】

Sliding-window Recursive PLS Based Soft Sensing Model and Its Application to the Quality Control of Rubber Mixing Process

机译:基于滑窗递归PLS的软测量模型及其在胶料质量控制中的应用

获取原文

摘要

Rubber industry requires highly the quality control of rubber mixture. In order to overcome the shortage of PLS algorithm in rubber mixing process with complex nonlinearity and time-variance, an adaptive soft sensing model based on sliding-widow recursive PLS (RPLS) is presented to build a prediction model for the Mooney-viscosity of rubber mixture. The improved RPLS model can adaptively adjust the structures and parameters of PLS model according to on-line monitoring data and take characteristics of batch-wise data updated with the process changes and time-variant tracking capabilities. The application results show that the adaptive model has stronger tracking ability and higher precision than the traditional PLS model. The results also verify its effectiveness.
机译:橡胶工业高度要求橡胶混合物的质量控制。为了克服非线性和时变复杂的橡胶混炼过程中PLS算法的不足,提出了一种基于滑窗递归PLS(RPLS)的自适应软传感模型,建立了橡胶门尼粘度预测模型。混合物。改进后的RPLS模型可以根据在线监测数据自适应地调整PLS模型的结构和参数,并具有随过程变化和时变跟踪能力而更新的批量数据的特征。应用结果表明,该自适应模型比传统的PLS模型具有更强的跟踪能力和更高的精度。结果也证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号