首页> 外文会议>Advances in Case-Based Reasoning >CBR for CBR:A Case-Based Template Recommender System for Building Case-Based Systems
【24h】

CBR for CBR:A Case-Based Template Recommender System for Building Case-Based Systems

机译:CBR for CBR:用于构建基于案例的系统的基于案例的模板推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Our goal is to support system developers in rapid prototyping of Case-Based Reasoning (CBR) systems through component reuse. In this paper, we propose the idea of templates that can be readily adapted when building a CBR system. We define a case base of templates for case-based recommender systems. We devise a novel case-based template recommender, based on recommender systems research, but using a new idea that we call Retrieval-by-Trying. Our experiments with the system show that similarity based on semantic features is more effective than similarity based on behavioural features, which is in turn more effective than similarity based on structural features.
机译:我们的目标是通过组件重用来支持系统开发人员快速进行基于案例的推理(CBR)系统的原型制作。在本文中,我们提出了在构建CBR系统时可以轻松适应的模板的想法。我们为基于案例的推荐系统定义了模板的案例库。我们基于推荐者系统研究,设计了一个新颖的基于案例的模板推荐器,但是使用了一种新的想法,即尝试检索。我们对系统的实验表明,基于语义特征的相似度比基于行为特征的相似度更有效,而基于行为特征的相似度则比基于结构特征的相似度更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号