首页> 外文会议>Advances in artificial intelligence >Extracting Relations between Diseases, Treatments, and Tests from Clinical Data
【24h】

Extracting Relations between Diseases, Treatments, and Tests from Clinical Data

机译:从临床数据中提取疾病,治疗方法和检测方法之间的关系

获取原文
获取原文并翻译 | 示例

摘要

This paper describes research methodologies and experimental settings for the task of relation identification and classification between pairs of medical entities, using clinical data. The models that we use represent a combination of lexical and syntactic features, medical semantic information, terms extracted from a vector-space model created using a random projection algorithm, and additional contextual information extracted at sentence-level. The best results are obtained using an SVM classification algorithm with a combination of the above mentioned features, plus a set of additional features that capture the distributional semantic correlation between the concepts and each relation of interest.
机译:本文介绍了使用临床数据进行医学实体对之间的关​​系识别和分类任务的研究方法和实验设置。我们使用的模型代表了词汇和句法特征,医学语义信息,从使用随机投影算法创建的向量空间模型中提取的术语以及在句子级别提取的其他上下文信息的组合。使用具有上述特征的组合的SVM分类算法,再加上捕获概念和每个感兴趣关系之间的分布语义相关性的一组附加特征,可以获得最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号