首页> 外文会议>Advances in data mining : Applications and theoretical aspects >Exploratory Hierarchical Clustering for Management Zone Delineation in Precision Agriculture
【24h】

Exploratory Hierarchical Clustering for Management Zone Delineation in Precision Agriculture

机译:探索性分层聚类法在精准农业管理区划中的应用

获取原文
获取原文并翻译 | 示例

摘要

Precision Agriculture has become an emerging topic over the last ten years. It is concerned with the integration of information technology into agricultural processes. This is especially true for the ongoing and growing data collection in agriculture. Novel ground-based sensors, aerial and satellite imagery as well as soil sampling provide large georef-erenced data sets with high spatial resolution. However, these data lead to the data mining problem of finding novel and useful information in these data sets.One of the key tasks in the area of precision agriculture is management zone delineation: given a data set of georeferenced data records with high spatial resolution, we would like to discover spatially mostly contiguous zones on the field which exhibit similar characteristics within the zones and different characteristics between zones. Prom a data mining point of view, this task comes down to a variant of spatial clustering with a constraint of keeping the resulting clusters spatially mostly contiguous.This article presents a novel approach tailored to the specifics of the available data, which do not allow for using an existing algorithm. A variant of hierarchical agglomerative clustering will be presented, in conjunction with a spatial constraint. Results on available multi-variate data sets and subsets will be presented.
机译:在过去的十年中,精准农业已成为一个新兴话题。它涉及将信息技术集成到农业过程中。对于不断发展的农业数据收集尤其如此。新型的地面传感器,航空和卫星图像以及土壤采样提供了具有高空间分辨率的大型地理参考数据集。但是,这些数据导致了在这些数据集中寻找新颖有用信息的数据挖掘问题。精准农业领域的关键任务之一是管理区划定:给定具有高空间分辨率的地理参考数据记录的数据集,我们想在野外发现空间上大部分相邻的区域,这些区域在区域内表现出相似的特征,而区域之间表现出不同的特征。从数据挖掘的角度出发,该任务归结为空间聚类的一种变体,其约束是使所得聚类在空间上基本上是连续的。本文提出了一种针对可用数据的具体情况而量身定制的新颖方法。使用现有算法。结合空间约束,将提出分层聚类聚类的变体。将提供有关可用多元数据集和子集的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号